prepInputs(
targetFile = NULL,
url = NULL,
archive = NULL,
alsoExtract = NULL,
destinationPath = getOption("reproducible.destinationPath", "."),
fun = NULL,
quick = getOption("reproducible.quick"),
overwrite = getOption("reproducible.overwrite", FALSE),
purge = FALSE,
useCache = getOption("reproducible.useCache", 2),
.tempPath,
verbose = getOption("reproducible.verbose", 1),
...
)
Character string giving the filename (without relative or
absolute path) to the eventual file
(raster, shapefile, csv, etc.) after downloading and extracting from a zip
or tar archive. This is the file before it is passed to
postProcess
. The internal checksumming does not checksum
the file after it is postProcess
ed (e.g., cropped/reprojected/masked).
Using Cache
around prepInputs
will do a sufficient job in these cases.
See table in preProcess()
.
Optional character string indicating the URL to download from.
If not specified, then no download will be attempted. If not entry
exists in the CHECKSUMS.txt
(in destinationPath
), an entry
will be created or appended to. This CHECKSUMS.txt
entry will be used
in subsequent calls to
prepInputs
or preProcess
, comparing the file on hand with the ad hoc
CHECKSUMS.txt
. See table in preProcess()
.
Optional character string giving the path of an archive
containing targetFile
, or a vector giving a set of nested archives
(e.g., c("xxx.tar", "inner.zip", "inner.rar")
). If there is/are (an) inner
archive(s), but they are unknown, the function will try all until it finds
the targetFile
. See table in preProcess()
. If it is NA
,
then it will not attempt to see it as an archive, even if it has archive-like
file extension (e.g., .zip
). This may be useful when an R function
is expecting an archive directly.
Optional character string naming files other than
targetFile
that must be extracted from the archive
. If
NULL
, the default, then it will extract all files. Other options:
"similar"
will extract all files with the same filename without
file extension as targetFile
. NA
will extract nothing other
than targetFile
. A character string of specific file names will cause
only those to be extracted. See table in preProcess()
.
Character string of a directory in which to download
and save the file that comes from url
and is also where the function
will look for archive
or targetFile
. NOTE (still experimental):
To prevent repeated downloads in different locations, the user can also set
options("reproducible.inputPaths")
to one or more local file paths to
search for the file before attempting to download. Default for that option is
NULL
meaning do not search locally.
Optional. If specified, this will attempt to load whatever
file was downloaded during preProcess
via dlFun
. This can be either a
function (e.g., sf::st_read), character string (e.g., "base::load"),
NA (for no loading, useful if dlFun
already loaded the file) or
if extra arguments are required
in the function call, it must be a call naming
targetFile
(e.g., sf::st_read(targetFile, quiet = TRUE)
)
as the file path to the file to load. See details and examples below.
Logical. This is passed internally to Checksums()
(the quickCheck argument), and to
Cache()
(the quick argument). This results in faster, though
less robust checking of inputs. See the respective functions.
Logical. Should downloading and all the other actions occur even if they pass the checksums or the files are all there.
Logical or Integer. 0/FALSE
(default) keeps existing
CHECKSUMS.txt
file and
prepInputs
will write or append to it. 1/TRUE
will deleted the entire
CHECKSUMS.txt
file. Other options, see details.
Passed to Cache
in various places.
Defaults to getOption("reproducible.useCache", 2L)
in prepInputs
, and
getOption("reproducible.useCache", FALSE)
if calling any of the inner
functions manually. For prepInputs
, this mean it will use Cache
only up to 2 nested levels, which includes preProcess
. postProcess
and
its nested *Input
functions (e.g., cropInputs
, projectInputs
,
maskInputs
) are no longer internally cached, as terra
processing speeds
mean internal caching is more time consuming. We recommend caching the full
prepInputs
call instead (e.g. prepInputs(...) |> Cache()
).
Optional temporary path for internal file intermediate steps. Will be cleared on.exit from this function.
Numeric, -1 silent (where possible), 0 being very quiet,
1 showing more messaging, 2 being more messaging, etc.
Default is 1. Above 3 will output much more information about the internals of
Caching, which may help diagnose Caching challenges. Can set globally with an
option, e.g., options('reproducible.verbose' = 0) to reduce to minimal
Additional arguments passed to
postProcess()
and Cache()
.
Since ...
is passed to postProcess()
, these will
...
will also be passed into the inner
functions, e.g., cropInputs()
. Possibly useful other arguments include
dlFun
which is passed to preProcess
. See details and examples.
This is an omnibus function that will return an R object that will have resulted from
the running of preProcess()
and postProcess()
or postProcessTo()
. Thus,
if it is a GIS object, it may have been cropped, reprojected, "fixed", masked, and
written to disk.
This function can be used to prepare R objects from remote or local data sources.
The object of this function is to provide a reproducible version of
a series of commonly used steps for getting, loading, and processing data.
This function has two stages: Getting data (download, extracting from archives,
loading into R) and post-processing (for Spatial*
and Raster*
objects, this is crop, reproject, mask/intersect).
To trigger the first stage, provide url
or archive
.
To trigger the second stage, provide studyArea
or rasterToMatch
.
See examples.
This function is still experimental: use with caution.
See preProcess()
for combinations of arguments.
Download from the web via either googledrive::drive_download()
,
utils::download.file()
;
Load into R using terra::rast
,
sf::st_read
, or any other function passed in with fun
;
Checksumming of all files during this process. This is put into a
CHECKSUMS.txt
file in the destinationPath
, appending if it is
already there, overwriting the entries for same files if entries already exist.
This will be triggered if either rasterToMatch
or studyArea
is supplied.
Fix errors. Currently only errors fixed are for SpatialPolygons
using buffer(..., width = 0)
;
Crop using cropTo()
;
Project using projectTo()
;
Mask using maskTo()
;
Determine file name determineFilename()
via filename2
;
Optionally, write that file name to disk via writeTo()
.
NOTE: checksumming does not occur during the post-processing stage, as
there are no file downloads. To achieve fast results, wrap
prepInputs
with Cache
.
NOTE: sf
objects are still very experimental.
Spat*
, sf
, Raster*
and Spatial*
objects:The following has been DEPRECATED because there are a sufficient number of
ambiguities that this has been changed in favour of from
and the *to
family.
See postProcessTo()
.
DEPRECATED: If rasterToMatch
or studyArea
are used, then this will
trigger several subsequent functions, specifically the sequence,
Crop, reproject, mask, which appears to be a common sequence while
preparing spatial data from diverse sources.
See postProcess()
documentation section on
Backwards compatibility with rasterToMatch
and/or studyArea
arguments
to understand various combinations of rasterToMatch
and/or studyArea
.
fun
fun
offers the ability to pass any custom function with which to load
the file obtained by preProcess
into the session. There are two cases that are
dealt with: when the preProcess
downloads a file (including via dlFun
),
fun
must deal with a file; and, when preProcess
creates an R object
(e.g., raster::getData returns an object), fun
must deal with an object.
fun
can be supplied in three ways: a function, a character string
(i.e., a function name as a string), or an expression.
If a character string or function, is should have the package name e.g.,
"terra::rast"
or as an actual function, e.g., base::readRDS
.
In these cases, it will evaluate this function call while passing targetFile
as the first argument. These will only work in the simplest of cases.
When more precision is required, the full call can be written and where the
filename can be referred to as targetFile
if the function
is loading a file. If preProcess
returns an object, fun
should be set to
fun = NA
.
If there is a custom function call, is not in a package, prepInputs
may not find it. In such
cases, simply pass the function as a named argument (with same name as function) to prepInputs
.
See examples.
NOTE: passing fun = NA
will skip loading object into R. Note this will essentially
replicate the functionality of simply calling preProcess
directly.
purge
In options for control of purging the CHECKSUMS.txt
file are:
0
keep file
1
delete file in destinationPath
, all records of downloads need to be rebuilt
2
delete entry with same targetFile
4
delete entry with same alsoExtract
3
delete entry with same archive
5
delete entry with same targetFile
& alsoExtract
6
delete entry with same targetFile
, alsoExtract
& archive
7
delete entry that same targetFile
, alsoExtract
& archive
& url
will only remove entries in the CHECKSUMS.txt
that are associated with
targetFile
, alsoExtract
or archive
When prepInputs
is called,
it will write or append to a (if already exists) CHECKSUMS.txt
file.
If the CHECKSUMS.txt
is not correct, use this argument to remove it.
# \donttest{
if (requireNamespace("terra", quietly = TRUE) &&
requireNamespace("sf", quietly = TRUE)) {
library(reproducible)
# Make a dummy study area map -- user would supply this normally
coords <- structure(c(-122.9, -116.1, -99.2, -106, -122.9, 59.9, 65.7, 63.6, 54.8, 59.9),
.Dim = c(5L, 2L)
)
studyArea <- terra::vect(coords, "polygons")
terra::crs(studyArea) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
# Make dummy "large" map that must be cropped to the study area
outerSA <- terra::buffer(studyArea, 50000)
terra::crs(outerSA) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
tf <- normPath(file.path(tempdir2("prepInputsEx"), "prepInputs2.shp"))
terra::writeVector(outerSA, tf, overwrite = TRUE)
# run prepInputs -- load file, postProcess it to the studyArea
studyArea2 <- prepInputs(
targetFile = tf, to = studyArea,
fun = "terra::vect",
destinationPath = tempdir2()
) |>
suppressWarnings() # not relevant warning here
# clean up
unlink("CHECKSUMS.txt")
##########################################
# Remote file using `url`
##########################################
if (internetExists()) {
data.table::setDTthreads(2)
origDir <- getwd()
# download a zip file from internet, unzip all files, load as shapefile, Cache the call
# First time: don't know all files - prepInputs will guess, if download file is an archive,
# then extract all files, then if there is a .shp, it will load with sf::st_read
dPath <- file.path(tempdir(), "ecozones")
shpUrl <- "http://sis.agr.gc.ca/cansis/nsdb/ecostrat/zone/ecozone_shp.zip"
# Wrapped in a try because this particular url can be flaky
shpEcozone <- try(prepInputs(
destinationPath = dPath,
url = shpUrl
))
if (!is(shpEcozone, "try-error")) {
# Robust to partial file deletions:
unlink(dir(dPath, full.names = TRUE)[1:3])
shpEcozone <- prepInputs(
destinationPath = dPath,
url = shpUrl
)
unlink(dPath, recursive = TRUE)
# Once this is done, can be more precise in operational code:
# specify targetFile, alsoExtract, and fun, wrap with Cache
ecozoneFilename <- file.path(dPath, "ecozones.shp")
ecozoneFiles <- c(
"ecozones.dbf", "ecozones.prj",
"ecozones.sbn", "ecozones.sbx", "ecozones.shp", "ecozones.shx"
)
shpEcozone <- prepInputs(
targetFile = ecozoneFilename,
url = shpUrl,
fun = "terra::vect",
alsoExtract = ecozoneFiles,
destinationPath = dPath
)
unlink(dPath, recursive = TRUE)
# Add a study area to Crop and Mask to
# Create a "study area"
coords <- structure(c(-122.98, -116.1, -99.2, -106, -122.98, 59.9, 65.73, 63.58, 54.79, 59.9),
.Dim = c(5L, 2L)
)
studyArea <- terra::vect(coords, "polygons")
terra::crs(studyArea) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
# specify targetFile, alsoExtract, and fun, wrap with Cache
ecozoneFilename <- file.path(dPath, "ecozones.shp")
# Note, you don't need to "alsoExtract" the archive... if the archive is not there, but the
# targetFile is there, it will not redownload the archive.
ecozoneFiles <- c(
"ecozones.dbf", "ecozones.prj",
"ecozones.sbn", "ecozones.sbx", "ecozones.shp", "ecozones.shx"
)
shpEcozoneSm <- Cache(prepInputs,
url = shpUrl,
targetFile = reproducible::asPath(ecozoneFilename),
alsoExtract = reproducible::asPath(ecozoneFiles),
studyArea = studyArea,
fun = "terra::vect",
destinationPath = dPath,
filename2 = "EcozoneFile.shp"
) # passed to determineFilename
terra::plot(shpEcozone[, 1])
terra::plot(shpEcozoneSm[, 1], add = TRUE, col = "red")
unlink(dPath)
}
}
}
#> Running `prepInputs`
#> Running `preProcess`
#> Preparing: /tmp/RtmpxA3jdR/reproducible/prepInputsEx/prepInputs2.shp
#> alsoExtract is unspecified; assuming that all files must be
#> extracted
#> Running `process` (i.e., loading file into R)
#> targetFile located at
#> /tmp/RtmpxA3jdR/reproducible/prepInputsEx/prepInputs2.shp
#> Loading object into R
#> Running `postProcessTo`
#> projecting...
#> done! took: 0.00329 secs
#> masking...
#> done! took: 0.0014 secs
#> cropping...
#> done! took: 0.00822 secs
#> postProcessTo done! took: 0.0248 secs
#> Running `prepInputs`
#> Running `preProcess`
#> ...downloading...
#> Downloading
#> http://sis.agr.gc.ca/cansis/nsdb/ecostrat/zone/ecozone_shp.zip ...
#>
|
| | 0%
|
|======================================================================| 100%
#>
|
| | 0%
|
|= | 1%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|==== | 5%
|
|===== | 6%
|
|===== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|======== | 12%
|
|========= | 13%
|
|========== | 14%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============= | 18%
|
|============== | 19%
|
|============== | 21%
|
|=============== | 22%
|
|================ | 23%
|
|================= | 24%
|
|================= | 25%
|
|================== | 26%
|
|=================== | 27%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 30%
|
|====================== | 31%
|
|======================= | 32%
|
|======================= | 34%
|
|======================== | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|================================ | 45%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|========================================= | 58%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================== | 71%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|===================================================================== | 99%
|
|======================================================================| 100%
#> Hardlinked version of file(s) created:
#> ... no copy/copies made.
#> alsoExtract is unspecified; assuming that all files must be
#> extracted
#> No targetFile supplied. Checksumming all files in archive
#> From:
#> /tmp/RtmpxA3jdR/ecozones/ecozone_shp.zip
#> Extracting
#> files
#> <char>
#> 1: Ecozones/ecozones.dbf
#> 2: Ecozones/ecozones.prj
#> 3: Ecozones/ecozones.sbn
#> 4: Ecozones/ecozones.sbx
#> 5: Ecozones/ecozones.shp
#> 6: Ecozones/ecozones.shx
#> ... Done extracting 8 files
#> Appending checksums to CHECKSUMS.txt. If you see this message
#> repeatedly, you can specify targetFile (and optionally alsoExtract)
#> so it knows what to look for.
#> Using sf::st_read on shapefile because sf package is available; to
#> force old behaviour with 'raster::shapefile' use fun =
#> 'raster::shapefile' or options('reproducible.shapefileRead' =
#> 'raster::shapefile')
#> targetFile was not specified. Trying sf::st_read on
#> /tmp/RtmpxA3jdR/ecozones/Ecozones/ecozones.shp. If that is not
#> correct, please specify a different targetFile and/or fun.
#> Running `process` (i.e., loading file into R)
#> targetFile located at /tmp/RtmpxA3jdR/ecozones/Ecozones/ecozones.shp
#> Loading object into R
#> Reading layer `ecozones' from data source
#> `/tmp/RtmpxA3jdR/ecozones/Ecozones/ecozones.shp' using driver `ESRI Shapefile'
#> Simple feature collection with 25 features and 7 fields
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: -140.9994 ymin: 41.67354 xmax: -52.36458 ymax: 83.63315
#> Geodetic CRS: GCS_North_American_1983_CSRS98
#> Saved! Cache file: 9076a712c1f3453e.rds; fn: sf::st_read
#> Running `prepInputs`
#> Running `preProcess`
#> ...downloading...
#> Downloading
#> http://sis.agr.gc.ca/cansis/nsdb/ecostrat/zone/ecozone_shp.zip ...
#>
|
| | 0%
|
|======================================================================| 100%
#>
|
| | 0%
|
|= | 1%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|==== | 5%
|
|===== | 6%
|
|===== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|======== | 12%
|
|========= | 13%
|
|========== | 14%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============= | 18%
|
|============== | 19%
|
|============== | 21%
|
|=============== | 22%
|
|================ | 23%
|
|================= | 24%
|
|================= | 25%
|
|================== | 26%
|
|=================== | 27%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 30%
|
|====================== | 31%
|
|======================= | 32%
|
|======================= | 34%
|
|======================== | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|================================ | 45%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|========================================= | 58%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================== | 71%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|===================================================================== | 99%
|
|======================================================================| 100%
#> Hardlinked version of file(s) created:
#> ... no copy/copies made.
#> alsoExtract is unspecified; assuming that all files must be
#> extracted
#> No targetFile supplied. Checksumming all files in archive
#> From:
#> /tmp/RtmpxA3jdR/ecozones/ecozone_shp.zip
#> Extracting
#> files
#> <char>
#> 1: Ecozones/ecozones.dbf
#> 2: Ecozones/ecozones.prj
#> 3: Ecozones/ecozones.sbn
#> 4: Ecozones/ecozones.sbx
#> 5: Ecozones/ecozones.shp
#> 6: Ecozones/ecozones.shx
#> ... Done extracting 8 files
#> Appending checksums to CHECKSUMS.txt. If you see this message
#> repeatedly, you can specify targetFile (and optionally alsoExtract)
#> so it knows what to look for.
#> Using sf::st_read on shapefile because sf package is available; to
#> force old behaviour with 'raster::shapefile' use fun =
#> 'raster::shapefile' or options('reproducible.shapefileRead' =
#> 'raster::shapefile')
#> targetFile was not specified. Trying sf::st_read on
#> /tmp/RtmpxA3jdR/ecozones/Ecozones/ecozones.shp. If that is not
#> correct, please specify a different targetFile and/or fun.
#> Running `process` (i.e., loading file into R)
#> targetFile located at /tmp/RtmpxA3jdR/ecozones/Ecozones/ecozones.shp
#> Loading object into R
#> Object to retrieve (fn: sf::st_read,
#> 9076a712c1f3453e.rds) ...
#> Loaded! Cached result from previous sf::st_read call
#> Running `prepInputs`
#> Running `preProcess`
#> Preparing: ecozones.shp
#> ...downloading...
#> Downloading
#> http://sis.agr.gc.ca/cansis/nsdb/ecostrat/zone/ecozone_shp.zip ...
#>
|
| | 0%
|
|======================================================================| 100%
#>
|
| | 0%
|
|= | 1%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|==== | 5%
|
|===== | 6%
|
|===== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|======== | 12%
|
|========= | 13%
|
|========== | 14%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============= | 18%
|
|============== | 19%
|
|============== | 21%
|
|=============== | 22%
|
|================ | 23%
|
|================= | 24%
|
|================= | 25%
|
|================== | 26%
|
|=================== | 27%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 30%
|
|====================== | 31%
|
|======================= | 32%
|
|======================= | 34%
|
|======================== | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|================================ | 45%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|========================================= | 58%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================== | 71%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|===================================================================== | 99%
|
|======================================================================| 100%
#> Hardlinked version of file(s) created:
#> ... no copy/copies made.
#> User supplied files don't correctly specify the files in the archive
#> (likely because of sub-folders);
#> using items in archive with same
#> basenames. Renaming to these:
#>
#> Ecozones/ecozones.shp
#> Ecozones/ecozones.dbf
#> Ecozones/ecozones.prj
#> Ecozones/ecozones.sbn
#> Ecozones/ecozones.sbx
#> Ecozones/ecozones.shx
#>
#> From:
#> /tmp/RtmpxA3jdR/ecozones/ecozone_shp.zip
#> Extracting
#> files
#> <char>
#> 1: Ecozones/ecozones.dbf
#> 2: Ecozones/ecozones.prj
#> 3: Ecozones/ecozones.sbn
#> 4: Ecozones/ecozones.sbx
#> 5: Ecozones/ecozones.shp
#> 6: Ecozones/ecozones.shx
#> ... Done extracting 8 files
#> Appending checksums to CHECKSUMS.txt. If you see this message
#> repeatedly, you can specify targetFile (and optionally alsoExtract)
#> so it knows what to look for.
#> Running `process` (i.e., loading file into R)
#> targetFile located at /tmp/RtmpxA3jdR/ecozones/Ecozones/ecozones.shp
#> Loading object into R
#> No cachePath supplied and getOption('reproducible.cachePath') is
#> inside a temporary directory;
#> this will not persist across R
#> sessions.
#> Running `prepInputs`
#> Running `preProcess`
#> Preparing: ecozones.shp
#> ...downloading...
#> Downloading
#> http://sis.agr.gc.ca/cansis/nsdb/ecostrat/zone/ecozone_shp.zip ...
#>
|
| | 0%
|
|======================================================================| 100%
#>
|
| | 0%
|
|= | 1%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|==== | 5%
|
|===== | 6%
|
|===== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|======== | 12%
|
|========= | 13%
|
|========== | 14%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============= | 18%
|
|============== | 19%
|
|============== | 21%
|
|=============== | 22%
|
|================ | 23%
|
|================= | 24%
|
|================= | 25%
|
|================== | 26%
|
|=================== | 27%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 30%
|
|====================== | 31%
|
|======================= | 32%
|
|======================= | 34%
|
|======================== | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|================================ | 45%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|========================================= | 58%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================== | 71%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|===================================================================== | 99%
|
|======================================================================| 100%
#> Hardlinked version of file(s) created:
#> ... no copy/copies made.
#> User supplied files don't correctly specify the files in the archive
#> (likely because of sub-folders);
#> using items in archive with same
#> basenames. Renaming to these:
#>
#> Ecozones/ecozones.shp
#> Ecozones/ecozones.dbf
#> Ecozones/ecozones.prj
#> Ecozones/ecozones.sbn
#> Ecozones/ecozones.sbx
#> Ecozones/ecozones.shx
#>
#> From:
#> /tmp/RtmpxA3jdR/ecozones/ecozone_shp.zip
#> Extracting
#> files
#> <char>
#> 1: Ecozones/ecozones.dbf
#> 2: Ecozones/ecozones.prj
#> 3: Ecozones/ecozones.sbn
#> 4: Ecozones/ecozones.sbx
#> 5: Ecozones/ecozones.shp
#> 6: Ecozones/ecozones.shx
#> ... Done extracting 8 files
#> Appending checksums to CHECKSUMS.txt. If you see this message
#> repeatedly, you can specify targetFile (and optionally alsoExtract)
#> so it knows what to look for.
#> Running `process` (i.e., loading file into R)
#> targetFile located at
#> /tmp/RtmpxA3jdR/ecozones/Ecozones/ecozones.shp
#> Loading object into R
#> Running `postProcessTo`
#> cropping...
#> done! took: 0.0498 secs
#> masking...
#> done! took: 0.00636 secs
#> cropping...
#> done! took: 0.0168 secs
#> writing...
#> done! took: 0.00421 secs
#> postProcessTo done! took: 0.0968 secs
#> Saved! Cache file: 3c3231cf15abd24a.rds; fn: prepInputs
# }
## Using quoted dlFun and fun -- this is not intended to be run but used as a template
## prepInputs(..., fun = customFun(x = targetFile), customFun = customFun)
## # or more complex
## test5 <- prepInputs(
## targetFile = targetFileLuxRDS,
## dlFun =
## getDataFn(name = "GADM", country = "LUX", level = 0) # preProcess keeps file from this!
## ,
## fun = {
## out <- readRDS(targetFile)
## sf::st_as_sf(out)}
## )